Skip to content

Basic math functions


abs function

template <typename T1, KFR_ENABLE_IF(is_numeric<T1>)>
T1 abs(const T1 &x)

Returns the absolute value of x.


absmax function

template <typename T1, typename T2,
          KFR_ENABLE_IF(is_numeric_args<T1, T2>),
          typename Tout = std::common_type_t<T1, T2>>
Tout absmax(const T1 &x, const T2 &y)

Returns the greater in magnitude of two values.


absmin function

template <typename T1, typename T2,
          KFR_ENABLE_IF(is_numeric_args<T1, T2>),
          typename Tout = std::common_type_t<T1, T2>>
Tout absmin(const T1 &x, const T2 &y)

Returns the smaller in magnitude of two values.


add function

template <typename T1, typename T2, typename... Ts,
          KFR_ENABLE_IF(is_numeric_args<T1, T2, Ts...>)>
constexpr std::common_type_t<T1, T2, Ts...>
add(const T1 &x, const T2 &y, const Ts &...rest)

Returns sum of all the arguments passed to a function.


bitwiseand function

template <typename T1, typename T2>
std::common_type_t<T1, T2> bitwiseand(const T1 &x,
                                      const T2 &y)

Bitwise And


bitwiseandnot function

template <typename T1, typename T2>
std::common_type_t<T1, T2> bitwiseandnot(const T1 &x,
                                         const T2 &y)

Bitwise And-Not


bitwisenot function

template <typename T1> T1 bitwisenot(const T1 &x)

Bitwise Not


bitwiseor function

template <typename T1, typename T2>
std::common_type_t<T1, T2> bitwiseor(const T1 &x,
                                     const T2 &y)

Bitwise Or


bitwisexor function

template <typename T1, typename T2>
std::common_type_t<T1, T2> bitwisexor(const T1 &x,
                                      const T2 &y)

Bitwise Xor (Exclusive Or)


clamp function

template <typename T1, typename T2, typename T3,
          KFR_ENABLE_IF(is_numeric_args<T1, T2, T3>),
          typename Tout = std::common_type_t<T1, T2, T3>>
Tout clamp(const T1 &x, const T2 &lo, const T3 &hi)

Returns the first argument clamped to a range [lo, hi]


template <typename T1, typename T2,
          KFR_ENABLE_IF(is_numeric_args<T1, T2>),
          typename Tout = std::common_type_t<T1, T2>>
Tout clamp(const T1 &x, const T2 &hi)

Returns the first argument clamped to a range [0, hi]


cub function

template <typename T1, KFR_ENABLE_IF(is_numeric<T1>)>
constexpr inline T1 cub(const T1 &x)

Returns cube of x.


div function

template <typename T1, typename T2,
          typename Tout = std::common_type_t<T1, T2>>
Tout div(const T1 &x, const T2 &y)

Division


fmadd function

template <typename T1, typename T2, typename T3>
constexpr std::common_type_t<T1, T2, T3>
fmadd(const T1 &x, const T2 &y, const T3 &z)

Fused Multiply-Add


fmsub function

template <typename T1, typename T2, typename T3>
constexpr std::common_type_t<T1, T2, T3>
fmsub(const T1 &x, const T2 &y, const T3 &z)

Fused Multiply-Sub


horner function

template <typename T1, typename... Ts,
          KFR_ENABLE_IF(is_numeric_args<T1, Ts...>)>
constexpr std::common_type_t<T1, Ts...>
horner(const T1 &x, const Ts &...c)

Calculate polynomial using Horner's method

horner(x, 1, 2, 3) is equivalent to \(3x^2 + 2x + 1\)


horner_even function

template <typename T1, typename... Ts,
          KFR_ENABLE_IF(is_numeric_args<T1, Ts...>)>
constexpr std::common_type_t<T1, Ts...>
horner_even(const T1 &x, const Ts &...c)

Calculate polynomial using Horner's method (even powers)

horner_even(x, 1, 2, 3) is equivalent to \(3x^4 + 2x^2 + 1\)


horner_odd function

template <typename T1, typename... Ts,
          KFR_ENABLE_IF(is_numeric_args<T1, Ts...>)>
constexpr std::common_type_t<T1, Ts...>
horner_odd(const T1 &x, const Ts &...c)

Calculate polynomial using Horner's method (odd powers)

horner_odd(x, 1, 2, 3) is equivalent to \(3x^5 + 2x^3 + 1x\)


ipow function

template <typename T>
constexpr inline T ipow(const T &x, int base)

Raise x to the power base \(x^{base}\)

CHECK( ipow( 10, 3 ) == 1000 );
CHECK( ipow( 0.5, 2 ) == 0.25 );


max function

template <typename T1, typename T2,
          KFR_ENABLE_IF(is_numeric_args<T1, T2>),
          typename Tout = std::common_type_t<T1, T2>>
Tout max(const T1 &x, const T2 &y)

Returns the greater of two values.


min function

template <typename T1, typename T2,
          KFR_ENABLE_IF(is_numeric_args<T1, T2>),
          typename Tout = std::common_type_t<T1, T2>>
Tout min(const T1 &x, const T2 &y)

Returns the smaller of two values.


mix function

template <typename T1, typename T2, typename T3,
          KFR_ENABLE_IF(is_numeric_args<T1, T2, T3>)>
constexpr std::common_type_t<T1, T2, T3>
mix(const T1 &c, const T2 &x, const T3 &y)

Linear blend of x and y (c must be in the range 0...+1) Returns x + ( y - x ) * c


mixs function

template <typename T1, typename T2, typename T3,
          KFR_ENABLE_IF(is_numeric_args<T1, T2, T3>)>
constexpr std::common_type_t<T1, T2, T3>
mixs(const T1 &c, const T2 &x, const T3 &y)

Linear blend of x and y (c must be in the range -1...+1)


mod function

template <typename T1, typename T2,
          typename Tout = std::common_type_t<T1, T2>>
Tout mod(const T1 &x, const T2 &y)

Modulo


mul function

template <typename T1, typename T2, typename... Ts>
constexpr std::common_type_t<T1, T2, Ts...>
mul(const T1 &x, const T2 &y, const Ts &...rest)

Returns product of all the arguments passed to a function.


neg function

template <typename T1> inline T1 neg(const T1 &x)

Negation


reciprocal function

template <typename T> constexpr T reciprocal(const T &x)

Calculate Multiplicative Inverse of x Returns 1/x


rem function

template <typename T1, typename T2,
          typename Tout = std::common_type_t<T1, T2>>
Tout rem(const T1 &x, const T2 &y)

Remainder


rol function

template <typename T1, typename T2>
T1 rol(const T1 &left, const T2 &right)

Bitwise Left Rotate


ror function

template <typename T1, typename T2>
T1 ror(const T1 &left, const T2 &right)

Bitwise Right Rotate


select function

template <
    typename T1, size_t N, typename T2, typename T3,
    KFR_ENABLE_IF(is_numeric_args<T1, T2, T3>),
    typename Tout = subtype<std::common_type_t<T2, T3>>>
vec<Tout, N> select(const mask<T1, N> &m, const T2 &x,
                    const T3 &y)

Returns x if m is true, otherwise return y. Order of the arguments is same as in ternary operator.

return m ? x : y


shl function

template <typename T1, typename T2>
T1 shl(const T1 &left, const T2 &right)

Bitwise Left shift


shr function

template <typename T1, typename T2>
T1 shr(const T1 &left, const T2 &right)

Bitwise Right shift


sqr function

template <typename T1, KFR_ENABLE_IF(is_numeric<T1>)>
constexpr inline T1 sqr(const T1 &x)

Returns square of x.


sqrsum function

template <typename T1, typename... Ts>
constexpr inline std::common_type_t<T1, Ts...>
sqrsum(const T1 &x, const Ts &...rest)

Return square of the sum of all arguments

CHECK(sqrsum(1,2,3) == 36);


sqrt function

template <typename T1, KFR_ENABLE_IF(is_numeric<T1>)>
flt_type<T1> sqrt(const T1 &x)

Returns the positive square root of the x. \(\sqrt{x}\)


swapbyteorder function

template <typename T> T swapbyteorder(const T &x)

Swap byte order


Auto-generated from sources, Revision 6aea976a464de59d522d0c629e64bf0c044e6777, https://github.com/kfrlib/kfr/blob/6aea976a464de59d522d0c629e64bf0c044e6777/include/kfr/